硕导

当前位置: 首页 > 研究生培养 > 导师介绍 > 硕导 > 正文
裴立宅
发布日期:2019-12-04 作者: 来源: 点击:

姓名:裴立宅

所在系所:无机非金属材料系

职称:教授

邮箱:lzpei1977@163.comlzpei@ahut.edu.cn

课题组主页:


教育背景

2006年毕业于湖南大学材料物理与化学专业获工学博士学位

2001年毕业于湖南大学材料科学与工程专业获工学学士学位


工作履历

2011-现在 安徽工业大学 新葡的京集团350vip8888 教授

2007-现在 安徽工业大学 新葡的京集团350vip8888 硕士研究生导师

2006-2011 安徽工业大学 新葡的京集团350vip8888 副教授


教学

讲授本科生课程《材料力学性能》、《高技术陶瓷材料》、《专业导论》、《无机非金属材料学进展》,硕士研究生课程《纳米材料》。主持《材料力学性能》省级精品课程(批号:2016gxx016《高技术陶瓷材料》省级慕课(MOOC)课程批号:2017mooc036)、省级线下课程(批号:2020kfkc080、省级教学示范课程,《材料力学性能》省级智慧课堂试点项目批号:2017zhkt091)、《高技术陶瓷材料》安徽省十二五省级规划教材批号:RC14100032)和十三五省级规划教材(修订)批号:2017ghjc092)、省级专业综合改革项目(批号:2015zy014,是《材料力学性能》省级教学团队批号:2019jxtd044负责人主持安徽省教学研究省级重点项目本科专业评估背景下无机专业多维度创新型人才培养模式的改革研究(批号:2017jyxm1213,发表教改论文9指导本科生承担国家级大学生创新创业训练计划项目8项、省级大学生创新创业训练计划项目5,指导本科生获得挑战杯校二等奖6项、三等奖1项作为负责人获得校级教学成果三等奖1项,作为主要参加人获得省级教学成果特等奖1项,一等奖2项。

研究领域

低维纳米材料

电化学

光催化

表面处理液

固废利用

涂层

涂料


学术成果

主持企业产学研重大课题1项、安徽省自然科学基金3项、安徽省教育厅自然科学研究重点项目2项、福建省功能材料及应用重点实验室开放课题1项、厦门市粉末冶金技术与新材料重点实验室开放课题1项、企业横向开发项目等10余项,近年来在Journal of Materials Chemistry A, CrystEngComm, Journal of The Electrochemical Society, RSC Advances, Electrochimica Acta, Journal of Alloys and Compounds, Physical Review LettersJournal of Applied Physics等国际专业学术期刊上发表SCI收录论文80余篇,关于钒酸钙纳米棒的形成机制及酒石酸生物电化学传感性能的研究论文被Journal of Materials Research (27, 2391-2400 (2012))选作了封面论文出版。获得安徽省科技进步奖三等奖1项,获得国家发明专利20Journal of Materials Chemistry CJournal of The Electrochemistry SocietyJournal of Hazardous MaterialsJournal of Alloys and CompoundsRSC AdvancesMaterials Characterization70余个SCI收录期刊的特邀审稿人。作为主编编写了高等学校材料科学与工程类专业十二五规划教材、安徽省省级规划教材《高技术陶瓷材料》、《功能陶瓷材料概论》十一五国家规划教材《纳米材料导论》,主编了冶金工业出版社出版的《一维无机纳米材料》。指导的2009届硕士研究生获得了安徽省第三届优秀硕士论文奖,2012届、2013届、2014届硕士研究生获得了安徽工业大学优秀硕士论文奖。

箱:lzpei@ahut.edu.cn; lzpei1977@163.com


科研项目:

[1] 安徽省自然科学基金(1208085QE981308085ME722008085ME172

[2] 安徽省高校省级自然科学研究重点项目KJ2007B077KJ2011A042KJ2017A057

[3] 福建省功能材料及应用重点实验室开放课题(fma2017109

[4] 家自然科学基金重大科研仪器研制项目(41627801)子课题(主要承担人)

[5] 安徽长江钢铁股份有限公司横向项目(RD16200135

[6] 新疆中丹富兴新材料技术有限公司横向项目(RD16200134

[7] 厦门市粉末冶金技术与新材料重点实验室开放课题

[8] 马鞍山唯得力润滑材料科技有限公司横向项目RD15200189

[9] 马钢(集团)控股有限公司姑山矿业公司横向项目(RD18200429

[10] 四川绿岛环境工程有限公司横向项目(RD19200110(主要承担人)

[11] 国家重点施工新技术研发项目([2009]161号)(主要承担人)

[12] 江苏恒亮公司横向项目(材10-15

[13] 南京亿高微波系统工程有限公司横向项目(RH2000002952

[14] 上海远葆工业设计有限公司横向项目(RH2100000371-RH2100000375


专利:

[1] 裴立宅, 马悦. 一种铋酸钙纳米线的制备方法 [P]. 国家发明专利号: ZL201711071007.2, 授权日期: 2019. 06. 04.

[2] 裴立宅, 马悦. 一种锑化镍纳米棒的制备方法 [P]. 国家发明专利申请号: ZL201711070631.0, 授权日期: 2019. 05. 31.

[3] 裴立宅, 林飞飞. 一种聚苯胺复合铋酸锌纳米棒的制备方法 [P]. 国家发明专利号: ZL201711070604.3, 授权日期: 2019. 05. 31.

[4] 裴立宅, 仇方吕. 一种镍酸锰纳米片的制备方法 [P]. 国家发明专利号: ZL201711070970.9, 授权日期: 2019. 05. 07.

[5] 裴立宅, 林飞飞. 一种铋酸镧纳米棒的制备方法 [P]. 国家发明专利号: ZL201711070989.3, 授权日期: 2019. 05. 07.

[6] 裴立宅, 仇方吕. 一种硒酸铋纳米带的制备方法 [P]. 国家发明专利号: ZL201711070625.5, 授权日期: 2019. 05. 07.

[7] 裴立宅, 吴胜华. 铋酸锌-锗酸铈纳米棒复合生物滤料 [P]. 国家发明专利号: ZL201510336598.6, 授权日期: 2017. 03. 01.

[8] 裴立宅, 吴胜华. 铋酸锌-锗酸铈纳米棒复合生物滤料 [P]. 国家发明专利号: ZL201510336598.6, 授权日期: 2017. 03. 01.

[9] 裴立宅. 铝酸锂纳米片多功能复合涂料 [P]. 国家发明专利号: ZL201510055937.3, 授权日期: 2017. 01. 18.

[10] 裴立宅, 吴胜华. 一种铋酸铝纳米棒复合生物滤料 [P]. 国家发明专利号: ZL201510336596.7, 授权日期: 2016. 07. 06.

[11] 裴立宅, 蔡征宇. 一种铝酸锶纳米片复合涂料 [P]. 国家发明专利号: ZL201510056635.8, 授权日期: 2016. 08. 24.

[12] 裴立宅, 蔡征宇, 王帅, 杨硕. 一种中空球状锗酸镧及其制备方法 [P]. 国家发明专利号: ZL201410662850.8, 授权日期: 2016. 05. 11.

[13] 裴立宅. 一种硫化钕纳米针的合成方法 [P]. 国家发明专利号: ZL201410662884.7, 授权日期: 2016. 03. 02.

[14] 裴立宅, 刘汉鼎, 蔡征宇. 一种用于镀锌板、铝及铜合金表面处理的无铬钝化液 [P]. 国家发明专利号: ZL201410008509.0, 授权日期: 2016. 2. 10.

[15] 裴立宅, 蔡征宇. 一种氧化锌/氧化钛复合纳米棒的制备方法 [P]. 国家发明专利号: ZL201410009087.9, 授权日期: 2015. 8. 26.

[16] 裴立宅. 一种钒酸锰纳米针状结构及其合成方法 [P]. 国家发明专利号: ZL201310074998.5, 授权日期: 2015. 5. 13.

[17] 裴立宅, 俞海云. 一种钒酸锌纳米棒复合涂料 [P]. 国家发明专利号: ZL201310074971.6, 授权日期: 2015. 4. 1.

[18] 裴立宅. 钛酸铜纳米针及其制备方法 [P]. 国家发明专利号: ZL201310453564.6, 授权日期: 2014. 9. 3.

[19] 裴立宅. 一种制备钒酸锌纳米棒的方法 [P]. 国家发明专利号: ZL201310074973.5, 授权日期: 2014. 8. 13.

[20] 裴立宅, 胡锦莲, 樊传刚, 杨永. 一种锗酸钙纳米线及其制备方法 [P]. 国家发明专利授权号: ZL201010502467.8, 授权日期: 2013. 1. 9.

[21] 裴立宅, 赵海生. 锗酸铜纳米线及其制备方法 [P]. 中国, 国家发明专利号: ZL200810235763.9, 授权日期: 2011. 11. 9.

[22] 裴立宅. 一种低温制备无金属催化剂的纳米硅线的方法 [P]. 中国, 国家发明专利, 专利号: ZL200710021448.1, 授权日期: 2010. 5. 19.


著作及教材

[1]  裴立宅. 功能陶瓷材料概论 [M]. 北京: 化学工业出版社, 2021, 9.

[2]  裴立宅. 高技术陶瓷材料 [M]. 安徽合肥: 合肥工业大学出版社, 2015, 6. 高等学校材料科学与工程类专业十二五规划教材, 普通高等教育安徽省省级规划教材

[3]  唐元洪, 裴立宅, 赵新奇. 纳米材料导论 [M]. 湖南长沙: 湖南大学出版社, 2011, 6. 普通高等教育十一五国家规划教材

[4]  晋传贵, 裴立宅, 俞海云. 一维无机纳米材料 [M]. 北京: 冶金工业出版社, 2007, 6.


获奖:

[1] 裴立宅. 2020-2021安徽工业大学合肥校友会师德教席”, 2021.

[2] 裴立宅. 安徽工业大学十佳班主任, 2021.

[3] 裴立宅. 安徽工业大学校级线上教学名师, 2020.

[4] 裴立宅. 安徽工业大学本科教学创新奖, 2020.

[5] 张世宏, 斯松华, 柳东明, 何宜柱, 张庆安, 季爱华, 李明喜, 尹孝辉, 夏爱林, 李维火, 裴立宅. 高峰学科支撑,一流专业引领,材料科学与工程一流本科人才培养的创新实践, 安徽省教学成果省级特等奖, 2020, 获奖批号: 2019jxcgj188, 证书编号: 2019jxcgj188-11.

[6] 柳东明, 裴立宅, 斯松华, 俞海云, 张毅, 邓先功. 无机非金属材料工程专业创新型应用人才培养的改革与实践, 安徽省教学成果省级一等奖, 2020, 获奖批号: 2019jxcgj189, 证书编号: 2019jxcgj189-2.

[7] 裴立宅. 宝钢教育奖优秀教师提名奖, 2020.

[8] 裴立宅. 安徽工业大学2018-2019学年课堂教学优秀奖(一级), 2019.

[9]  裴立宅. 安徽工业大学2017-2019年度三全育人先进个人, 2019.

[10] 裴立宅. 安徽工业大学第四届教学优秀奖, 2019.

[11] 裴立宅. 安徽工业大学2017-2018学年本科生导师制优秀指导教师”, 2018.

[12] 裴立宅, 柳东明, 斯松华, 冉松林, 俞海云, 池方丽, 李家茂. 无机非金属材料工程专业建设模式的改革与实践, 安徽工业大学校级教学成果奖三等奖, 2018.

[13] 斯松华, 柳东明, 李凤霞, 李维火, 张世宏, 裴立宅, 夏爱林. 材料类专业建设及实践与创新型人才培养的改革与实践, 安徽省省级教学成果奖一等奖, 2018, 获奖批号: 2017jxcgj295, 获奖证书号: 2017jxcgj295-6.

[14] 裴立宅. 安徽工业大学2014届优秀硕士论文指导教师, 2016.

[15] 裴立宅. 安徽工业大学2012届、2013届优秀硕士论文指导教师, 2014.

[16] 张千峰, 裴立宅, 段泰轲, 董永平. 从分子簇合物到纳米尺度组分的设计思路及结构复合材料的制备与应用. 安徽省科学技术奖三等奖, 证书编号: 2012-3-R2, 2012.

[17] 裴立宅. 安徽省第三届优秀硕士论文指导教师, 证书编号: 2011175, 2011.

[18] 裴立宅. 安徽工业大学2009届优秀硕士论文指导教师, 2010.


论文:

[1]   L. Z. Pei*, C. H. Yu, Z. Y. Xue, Y. Zhang. A review on ternary bismuthate nanoscale materials [J]. Recent Patents on Nanotechnology, 2021, DOI : 10.2174/1872210514666200929144352.

[2]   H. J. Chen, Z. Y. Xue, C. H. Yu, Y. J. Mao, F. L. Qiu, L. Z. Pei*. Synthesis of vanadium doped lanthanum bismuthate nanorods for enhanced photocatalytic activity [J]. Journal of Nanoscience and Nanotechnology, 2021, 21(10): 5329-5336.

[3]   Z. Wang, H. J. Chen, F. L. Qiu, Z. Y. Xue, C. H. Yu, P. X. Wang, Q. M. Cong, L. Z. Pei*, C. G. Fan*, Y. Zhang. Facile cetyltrimethylammonium bromide (CTAB)-assisted synthesis of calcium bismuthate nanoflakes with solar light photocatalytic performance [J]. Current Nanoscience, 2021, 17(2): 315-326.

[4]   H. J. Chen, Z. Wang, L. Z. Pei*, X. Y. Guo, C. G. Fan, Fabrication of baking-free bricks from iron ore tailings [J]. Current Materials Science, 2020, 13(2): 97-110.

[5]   H. J. Chen, Z. Wang, Z. Y. Xue, C. H. Yu, L. Z. Pei*, C. G. Fan. Constructing a Z-scheme Bi2O3/In2O3 heterojunction for efficient photocatalytic degradation of Rhodamine B [J]. Crystal Research and Technology, 2020, 55(11): 2000093.

[6]   F. L. Qiu, Z. Wang, H. J. Chen, Y. Ma, H. Wu, L. Yan, L. Z. Pei*, C. G. Fan. Sodium dodecyl benzene sulfonate-assisted synthesis and natural sunlight photocatalytic activity of La bismuthate nanorods [J]. Current Nanoscience, 2020, 16(5): 805-815.

[7]   H. J. Chen, C. H. Yu, Z. Y. Xue, P. X. Wang, Z. Wang, Q. M. Cong, L. Z. Pei*, C. G. Fan*. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification and good photocatalytic activity toward organic pollutants [J]. Toxicological & Environmental Chemistry, 2020, 102(7-8): 356-385.

[8] L. Z. Pei, Y. Ma, F. L. Qiu, F. F. Lin, C. G. Fan*, X. Z. Ling*. Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde [J]. Current Analytical Chemistry, 2020, 16(4): 493-498.

[9]   L. Z. Pei, F. L. Qiu, Y. Ma, F. F. Lin, C. G. Fan*, X. Z. Ling*. Polyaniline/Al bismuthate composite nanorods modified glassy carbon electrode for the detection of benzoic acid [J]. Current Pharmaceutical Analysis, 2020, 16(2): 153-158.

[10]  Z. Wang, H. J. Chen, C. H. Yu, Z. Y. Xue, P. X. Wang, Q. M. Cong, L. Z. Pei*, C. G. Fan*. Utilizing iron tailing, sludge and fly ash to prepare ceramsites [J]. Current Materials Science, 2020, 13(1): 16-25.

[11]  L. Z. Pei, F. L. Qiu, Y. Ma, F. F. Lin, C. G. Fan*, X. Z. Ling*, S. B. Zhu. Graphene/zinc bismuthate nanorods composites and their electrochemical sensing performance for ascorbic acid [J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(1): 58-64.

[12]  L. Z. Pei, Y. Ma, F. L. Qiu, F. F. Lin, C. G. Fan*, X. Z. Ling*. In-situ synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid [J]. Mater Res Express, 2019, 6(1): 015053.

[13] Y. Zhang*, F. F. Lin, T. Wei, F. L. Qiu, Y. Ma, L. Z. Pei*, Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance [J]. Int J Mater Res, 2018, 109(11): 1035-1042.

[14] Y. Zhang, Y. Ma, T. Wei, F. F. Lin, F. L. Qiu, L. Z. Pei*. Polyaniline/zinc bismuthate nanocomposites for the enhanced electrochemical performance of the determination of L-Cysteine [J]. Measurement, 2018, 128: 55-62.

[15] L. Z. Pei*, T. Wei, N. Lin, H. Zhang, C. G. Fan. Bismuth tellurate nanospheres and electrochemical behaviors of L-Cysteine at the nanospheres modified electrode [J], Russ J Electrochem, 2018, 54(1): 98-106.

[16] Y. Zhang, F. F. Lin, T. Wei, L. Z. Pei*. Facile hydrothermal synthesis of Cu bismuthate nanosheets and senstive electrochemical detection of tartaric acid [J]. J Alloys Compd, 2017, 723(11): 1062-1069.

[17] L. Z. Pei*, F. F. Lin, F. L. Qiu, W. L. Wang, Y. Zhang, C. G. Fan. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid [J]. Mater Res Express, 2017, 4(7): 075047.

[18] Y. Wen, L. Z. Pei, T. Wei. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing properties [J]. Int J Mater Res, 2017, 108(7): 592-599.

[19] L. Z. Pei*, T. Wei, N. Lin, C. G. Fan, Z. Yang. Aluminium bismuthate nanorods and electrochemical performance for the detection of tartaric acid [J]. J Alloy Compd, 2016, 679(9): 39-46.

[20] L. Z. Pei*, T. Wei, N. Lin, H. Zhang. Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode [J]. J Alloy Compd, 2016, 663(4): 677-685.

[21] L. Z. Pei*, N. Lin, T. Wei, H. Y. Yu. Synthesis of manganese vanadate nanobelts and their visible light photocatalytic activity for methylene blue [J]. Journal of Experimental Nanoscience, 2016, 11(3): 197-214.

[22] L. Z. Pei*, T. Wei, N. Lin, Z. Y. Cai, C. G. Fan, Z. Yang*. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine [J]. J Electrochem Soc, 2016, 163(2): h7-H8.

[23] L. Z. Pei*, S. Wang, N. Lin, H. D. Liu, H. Y. Yu. Calcium germanate nanowires by vanadium doping with improved photocatalytic activities [J]. Journal of Experimental Nanoscience, 2015, 10(16): 1223-1231.

[24] L. Z. Pei*, N. Lin, T. Wei, H. D. Liu, H. Y. Yu. Zinc vanadate nanorods and their visible light photocatalytic activity [J]. J Alloy Compd, 2015, 631(5): 90-98.

[25] N. Lin, L. Z. Pei*, T. Wei, H. Y. Yu. Synthesis of Cu vanadate nanorods for visible light photocatalytic degradation of gentian violet. Cryst Res Technol, 2015, 50(3): 255-262.

[26] L. Z. Pei*, N. Lin, T. Wei, H. D. Liu, H. Y. Yu. Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid [J]. J Mater Chem A, 2015, 3(6): 2690-2700.

[27] L. Z. Pei*, S. Wang, H. D. Liu, N. Lin, H. Y. Yu*. Vanadium doped barium germanate microrods and photocatalytic properties under solar light [J]. Solid State Commun, 2015, 202(1): 35-38.

[28] L. Z. Pei*, H. D. Liu, N. Lin, H. Y. Yu. Bismuth titanate nanorods and their visible light photocatalytic properties [J]. J Alloy Compd, 2015, 622(1): 254-261.

[29] L. Z. Pei*, H. D. Liu, N. Lin, H. Y. Yu*. Hydrothermal synthesis of cerium titanate nanorods and its application in visible light photocatalysis [J]. Mater Res Bull, 2015, 62(1): 40-46.

[30] L. Z. Pei*, S. Wang, N. Lin, H. D. Liu, Y. H. Guo. Vanadium doping of stronium germanate and their visible photocatalytic properties [J]. RSC Adv, 2014, 4(89): 48144-48149.

[31] L. Z. Pei*, S. Wang, H. D. Liu, Y. Q. Pei. A review on ternary vanadate one-dimensional nanomaterials [J]. Recent Pat Nanotechnol, 2014, 8(2): 142-155.

[32] L. Z. Pei*, S. Wang, Y. K. Xie, Y. H. Yu, Y. H. Guo. Hydrothermal synthesis of barium germanate microrods and photocatalytic degradation performance for methyl blue [J]. J Alloy Compd, 2014, 587(2): 625-631.

[33] Y. K. Xie, L. Z. Pei*, Y. Q. Pei, Z. Y. Cai*. Determination of phenyl acetic acid by cyclic voltammetry with electrochemical detection [J]. Measurement, 2014, 47(1): 341-344.

[34] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, Q. F. Zhang. Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties [J]. Int J Mater Res, 2013, 104(12): 1267-1273.

[35] L. Z. Pei*, S. Wang, Y. X. Jiang, Y. Li, Y. K. Xie, Y. H. Guo. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue [J]. CrystEngComm, 2013, 15(38): 7815-7823.

[36] Z. Y. Cai, L. Z. Pei*, Y. K. Xie, C. G. Fan, D. G. Fu. Electrochemical determination of benzoic acid using CuGeO3 nanowire modified glassy carbon electrode. Meas Sci Technol, 2013, 24(9): 095701.

[37] L. Z. Pei*, Y. K. Xie, Y. Q. Pei, Y. X. Jiang, H. Y. Yu, Z. Y. Cai. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue [J]. Mater Res Bull, 2013, 48(3): 2557-2565.

[38] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, H. Y. Yu. Synthesis and characterizations of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of L-cysteine [J]. CrystEngComm, 2013, 15 (9): 1729-1738.

[39] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. Z. Yuan, D. K. Li, Q. F. Zhang. Polyvinyl pyrrolidone-assisted synthesis of crystalline Mn vanadate microtubes [J]. Mater Res, 2013, 16(1): 173-180.

[40] L. Z. Pei*, Y. Yang, Y. Q. Pei, Y. K. Xie. A review on one-dimensional ternary germanate nanomaterials [J]. Recent Pat Nanotechnol, 2013, 7(2): 93-107.

[41] Y. P. Dong*, L. Z. Pei, X. F. Chu, W. B. Zhang, Q. F. Zhang. Electrogenerated chemiluminescence of bismuth sulfide nanorods modified electrode in alkaline aqueous solution [J]. Analyst, 2013, 138(8): 2386-2391.

[42] Z. Y. Cai, L. Z. Pei*, Y. Yang, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. G. Fu. CuGeO3/polyaniline nanowires and their electrochemical responses for tartaric acid [J]. Meas Sci Technol, 2012, 13(11): 115701.

[43] L. Z. Pei*, Z. Y. Cai, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. G. Fu. Electrochemical behaviors of ascorbic acid at CuGeO3/polyaniline nanowire modified glassy carbon electrode [J]. J Electrochem Soc, 2012, 159(10): G107-G111.

[44] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. K. Li, Q. F. Zhang. Formation process of calcium vanadate nanorods and their electrochemical sensing properties [J]. J Mater Res, 2012, 27(18): 2391-2400. Published as a cover paper

[45] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. Z. Yuan, D. K. Li, Q. F. Zhang. Growth of calcium vanadate nanorods [J]. CrystEngComm, 2012, 14(13): 4262-4265.

[46] L. Z. Pei*, Y. K. Xie, Z. Y. Cai, Y. Yang, Y. Q. Pei, C. G. Fan, D. G. Fu. Electrochemical behaviors of ascorbic acid at copper germanate nanowire modified electrode [J]. J Electrochem Soc, 2012, 159(3): K55-K60.

[47] Z. Y. Cai, L. Z. Pei*, Y. Yang, Y. Q. Pei, C. G. Fan, D. G. Fu. Electrochemical behavior of tartaric acid at CuGeO3 nanowire modified glassy carbon electrode [J]. J Solid State Electrochem, 2012, 16(6): 2243-2249.

[48] L. Z. Pei*, Z. Y. Cai. A review on germanium nanowires [J]. Recent Patent on Nanotechnology, 2012, 6(1): 44-59.

[49] L. Z. Pei*, Y. Yang, Y. Q. Pei, S. L. Ran. Synthesis and microstructural control of flower-like cadmium germanate [J]. Mater Charact, 2011, 62(11): 1029-1035.

[50] L. Z. Pei*, Y. Yang, C. G. Fan, C. Z. Yuan, T. K. Duan, Q. F. Zhang. Synthesis and characterizations of calcium germanate nanowires [J]. CrystEngComm, 2011, 13(14): 4658-4665.

[51] L. Z. Pei*, Y. Yang, L. J. Yang, C. G. Fan, C. Z. Yuan, Q. F. Zhang. Large-scale synthesis and roles of growth conditions on the formation of Zn2GeO4 nanorods [J]. Solid State Commun, 2011, 151(14-15): 1036-1041.

[52] L. Z. Pei*, J. F. Wang, Y. P. Dong, X. X. Tao, S. B. Wang, C. G. Fan, J. L. Hu, Q. F. Zhang. Single-source route to Bi2S3 nanorods and their electrochemical sensing properties [J]. Curr Nanosci, 2011, 7(3): 402-406.

[53] L. Z. Pei*, Y. Yang, C. Z. Yuan, T. K. Duan, Q. F. Zhang. A simple route to synthesize manganese germanate nanorods [J]. Mater Charact, 2011, 62(6): 555-562.

[54] L. Z. Pei*, Y. Yang, Y. Q. Pei, C. Z. Yuan, T. K. Duan, Q. F. Zhang. Cd2Ge2O6 nanowires grown by a simple hydrothermal route [J]. Cryst Res Technol, 2011, 46(5): 480-484.

[55] L. Z. Pei*, J. F. Wang, L. J. Yang, S. B. Wang, Y. P. Dong, C. G. Fan, Q. F. Zhang. Synthesis of CuS and Cu1.1Fe1.1S2 crystals and their electrochemical properties [J]. Mater Charact, 2011, 62(3): 354-359.

[56] L. Z. Pei*, Y. Yang, L. J. Yang, C. Z. Yuan, C. G. Fan, Q. F. Zhang. Low temperature synthesis of CuGeO3 nanoflowers from n-hepane solution. Int J Mater Res, 2011, 102(11): 1391-1396.

[57] L. Z. Pei*, L. J. Yang, Y. Yang, C. Z. Yuan, C. G. Fan, Q. F. Zhang. Large-scale synthesis and growth conditions dependence on the formation of CuGeO3 nanowires. Mater Chem Phys, 2011, 130(1-2): 104-112.

[58] L. Z. Pei*, L. J. Yang, Y. P. Dong, J. F. Wang, C. G. Fan, J. Chen, W. Y. Yin, Q. F. Zhang Large-scale synthesis of submicron gallium oxide hydrate rods and their optical and electrochemical properties [J]. Cryst Res Technol, 2010, 45(10): 1087-1093.

[59] L. Z. Pei*, W. Y. Yin, J. F. Wang, J. Chen, C. G. Fan, Q. F. Zhang. Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process [J]. Mat Res, 2010, 13(3): 339-343.

[60] Y. P. Dong*, L. Z. Pei*, X. F. Chu, W. B. Zhang, Q. F. Zhang. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode [J]. Electrochim Acta, 2010, 55(18): 5135-5141.

[61] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, J. F. Wang, C. G. Fan, J. Chen, Q. F. Zhang. Low temperature growth of single crystalline germanium nanowires [J]. Mater Res Bull, 2010, 45(2): 153-158.

[62] L. Z. Pei*, L. J. Yang, Y. Yang, C. G. Fan, W. Y. Yin, J. Chen, Q. F. Zhang. A green and facile route to calcium silicate nanowires [J]. Mater Charact, 2010, 61(11): 1281-1285.

[63] L. Z. Pei*, J. F. Wang, W. Tan, H. Y. Yu, C. G. Fan, J. Chen, Q. F. Zhang. A convenient synthesis route to the zinc metagermanate nanorods [J]. Curr Nanosci, 2009, 5(4): 470-473.

[64] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q. F. Zhang. Single crystalline ZnO nanorods grown by a simple hydrothermal process [J]. Mater Charact, 2009, 60(9): 1063-1067.

[65] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q. F. Zhang, C. G. Fan. Low temperature growth and characterizations of single crystalline CuGeO3 nanowires [J]. CrystEngComm, 2009, 11(8): 1696-1701.

[66] L. Z. Pei*, H. S. Zhao, W. Tan, Q. F. Zhang. Facile hydrothermal preparation and characterizations of single crystalline Ge dioxide nanowires [J]. J Appl Phys, 2009, 105(5): 054313.

[67] L. Z. Pei*. Hydrothermal deposition and characterization of silicon oxide nanospheres [J]. Mater Charact, 2008, 59(5): 656-659.

[68] L. Z. Pei. Y. H. Tang*, X. Q. Zhao, Y. W. Chen, C. Guo. Formation mechanism of silicon carbide nanotubes with special morphology [J]. J Appl Phys, 2006, 100(4): 046105.

[69] L. Z. Pei, Y. H. Tang*, Y. W. Chen, C. Guo, X. X. Li, Y. Yuan, Y. Zhang. Preparation of silicon carbide nanotubes by hydrothermal method [J]. J Appl Phys, 2006, 99(11): 114306.

[70] L. Z. Pei, Y. H. Tang*, Y. W. Chen, C. Guo, W. Zhang, Y. Zhang. Silicon nanowires grown from silicon monoxide under hydrothermal conditions [J]. J Cryst Growth, 2006, 289(2): 423-427.

[71] Y. H. Tang*, L. Z. Pei, Y. W. Chen, C. Guo. Self-assembled silicon nanotubes under supercritically hydrothermal conditions [J]. Phys Rev Lett, 2005, 95: 116102.

Baidu
sogou